Permafrost

Datenschatz vom Matterhorn

Einzigartige Messkampagne und Naturgefahrenforschung: Seit 10 Jahren liefert ein Drahtlos-Sensornetzwerk auf dem Hörnligrat am Matterhorn ununterbrochen Messdaten über den Zustand der Felsen, des Permafrosts und des herrschenden Klimas.

Peter Rüegg

Jan Beutel
Jan Beutel
Feldarbeit in luftiger Höhe: Jan Beutel beim Unterhalt der Solaranlage am Hörnligrat. (Bild: Peter Rüegg)

 

Im Hitzesommer 2003 ereignete sich am Matterhorn ein Felssturz, der Öffentlichkeit wie Forschung aufschreckte: Am Hörnligrat brachen 1500 Kubikmeter Fels ab – das entspricht etwa dem Volumen von vier Einfamilienhäusern. Im steilen Fels klaffte eine Lücke, die mit Eis bedeckt war.

Rasch wurde Fachleuten klar: Die Rekordhitze hatte den Fels bis in grosse Tiefen erwärmt und das Eis, das in Poren und Rissen enthalten war, geschmolzen. Dadurch fehlte plötzlich der Kitt, welche die Felsmassen zusammenhielt.

Dieser Felssturz war Auftakt für das Projekt PermaSense, ein ungewöhnliches, interdisziplinär ausgerichtetes Forschungsvorhaben von Geo- und Ingenieurwissenschaftlern der Universität Zürich und ETH Zürich und weiterer Institutionen.

Das Projekt startete 2006 mit dem Ziel, Messungen und Beobachtungen zu erlauben, die bis zum damaligen Zeitpunkt nicht möglich waren. Die Forschenden wollten mithilfe modernster Geräte und Technologie in steilem Permafrost Messdaten in bisher unerreichter Menge und Qualität erheben.

Wieso werden Felswände unsicher

Das ist ihnen nicht nur gelungen, die Forschenden haben das Ziel weit übertroffen, wie sie nun in der Fachzeitschrift «Earth System Science Data» berichten. Die Studie beschreibt einen einmaligen 10 Jahre umfassenden hochaufgelösten Datensatz, den die Wissenschaftler im Hochgebirge am Hörnligrat des Matterhorns auf 3500 m ü.M. erhoben haben.

17 verschiedene Sensortypen an 29 Stellen am Grat und an der Abbruchstelle verteilt lieferten 115 Millionen einzelne Datenpunkte. «Dieser Datensatz ist wohl einer der längsten, dichtesten und diversesten Datensätze in der Geschichte der Permafrostforschung überhaupt», sagt Projektleiter Jan Beutel, Senior Researcher am Institut für Technische Informatik und Kommunikationsnetze der ETH Zürich, nicht ohne Stolz.

Durch den Einsatz modernster drahtloser Sensorik ist es den Forscherinnen und Forschern gelungen, sehr viele Daten von hoher Qualität zu erhalten, diese Daten in nahezu Echtzeit verfügbar zu machen und die laufenden Experimente genau zu überwachen und zu steuern.

Sein ehemaliger Projektpartner Samuel Weber von der UZH und Erstautor der Studie sagt: «Die kombinierte Analyse von Langzeitmessungen verschiedener Messsysteme führt zu einem vertieften Verständnis von Prozessen, welche zur Destabilisierung von Felswänden führen kann.» Weber arbeitet unterdessen als Postdoc an der TU München.

Weber_Beutel
Weber_Beutel
Samuel Weber, Projektpartner der UZH beim PermaSense-Projekt zusammen mit Jan Beutel von der ETH Zürich (im Hintergrund). (Bild: Peter Rüegg)

 

Durch den Einsatz modernster drahtloser Sensorik ist es den Forscherinnen und Forschern gelungen, sehr viele Daten von hoher Qualität zu erhalten, diese Daten in nahezu Echtzeit verfügbar zu machen und die laufenden Experimente genau zu überwachen und zu steuern.

Zum Sensornetzwerk zählt unter anderem eine automatische Spiegelreflexkamera, die alle zwei Minuten Bilder von der Abbruchstelle schiesst; Abstandsmessungen in Felsspalten (Crackmeter) gehören dazu, welche die Weitung von Klüften und den Versatz von Felsbrocken zueinander messen.

In verschiedenen Felstiefen, aber auch an der Oberfläche werden Temperaturen gemessen. Permanent registrieren Neigungsmesser und GPS-Sensoren, wie sich einzelne Felsköpfe und auch der ganze Grat talwärts neigen. In den letzten Jahren ergänzten die Forscher ihre Sensorenfamilie um Seismik- und Akustik-Messgeräte.

Vom Hörnligrat gelangen die Messdaten über Funk zum Kleinen Matterhorn und von dort über das Internet praktisch in Echtzeit in ein Rechenzentrum der ETH Zürich. Dort werden sie gesammelt, analysiert und ausgewertet, seit nunmehr 10 Jahren permanent und beinahe ohne Unterbruch, sommers wie winters, zu jeder Tageszeit.

Resonanzen der Felsen messen

«Vor allem die Seismik hat es uns in den letzten drei Jahren der Messkampagne erlaubt, das zu messen, was wir von Anfang an wollten: Steinschlag und Felsstürze. Wir konnten damit in den Signalen vom Berg Muster erkennen, die solche Ereignisse quantitativ erfassbar machen», sagt Beutel.

Mithilfe der seismischen Sensoren ist es ihnen gelungen, sehr viele Ereignisse – etwa die anfänglich unsichtbare Rissbildung in Felsen – zu registrieren, welche die bisherigen Sensoren nicht erfassen konnten. «Seismische Sensoren registrieren viel mehr und bieten Informationsdichten und Analysemöglichkeiten, die wir uns zuvor nicht vorstellen konnten», sagt der Elektroingenieur.

Der Nachteil dieser Sensoren: Sie brauchen Kabel, mehr Strom, tiefere Bohrlöcher, welche erst gebohrt werden mussten. Und sie zeichnen auch Signale auf, die gar nicht vom Berg stammen, etwa die Schritte der Bergsteiger auf ihrem Weg zum Gipfel.

Dieses Hintergrundrauschen mussten die Forscher erst aus den Daten entfernen, mithilfe von maschinellem Lernen und klugen Algorithmen, welche von den aktuell am Projekt beteiligten ETH-Doktoranden direkt auf die drahtlosen Sensoren programmiert wurden.

Zur Überprüfung fütterten sie die Algorithmen unter anderem auch mit den Belegungsdaten der Hörnlihütte, wo Matterhorn-Besteiger übernachten. Die Belegungsdaten dienen dabei als Anhaltspunkt, wann Menschen am Berg unterwegs sind und welche «Störsignale» von ihnen ausgehen.

«Wir können also mit seismischen und akustischen Messungen, gekoppelt mit Messungen von Spaltenweiten und Fotografien der Untersuchungsstelle, ziemlich genau abbilden, wie sich der Permafrost verändert und Voraussagen machen, wo sich etwas anbahnen könnte», sagt Beutel, «ich halte dies für eines der besten Resultate, die wir im Rahmen von PermaSense erzielten.»

Zu verdanken seien diese Ergebnisse Samuel Weber, der in den letzten drei Jahren seine wegweisende Dissertation zum Thema an der Universität Zürich abgeliefert habe, sagt Beutel, andererseits auch dem Einbezug des Schweizerischen Erdbebendienst rund um ETH-Professor Donath Fäh, welcher das Wissen aus der Seismik eingebracht habe.

Detail im Berg
Detail im Berg
Samuel Weber umgeben von technischen Geräten. Die Messgeräte werden durch Solarstrom versorgt. (Bild:Jan Beutel)

 

Abgeschlossen ist die Messkampagne am Matterhorn nicht. Sie läuft vorerst weiter. Das Knowhow vom «Horu» möchten die Forscher auch auf andere Projekte übertragen. Das erworbene technische und geologische Wissen könnte nun für die Naturkatastrophenvorhersage an kritischen Orten im steilen Gelände oder an Bergen genutzt werden.

Eine Anwendungsmöglichkeit wäre beispielsweise am Piz Cengalo im Bergell. Dort ereignete sich im Sommer 2017 ein gewaltiger Felssturz von mehreren Millionen Kubikmetern Umfang der auch mehrere Menschen in den Tod riss. Damit einhergehende Murgänge zerstörten Teile des Dorfes Bondo. Die Experten erwarten, dass es an diesem Berg noch zu weiteren Felsstürzen kommen wird. Sie überwachen daher den Berg rund um die Uhr.

Beutel könnte sich vorstellen, ein vergleichbares Sensornetzwerk wie am Matterhorn auch am Pizzo Cengalo zu installieren und zu betreiben. Er versteht dies als einmalige Chance, mehr über die Vorgänge in steilem Permafrost zu lernen, insbesondere über die Mechanismen, die steilen, gefrorenen Fels instabil werden lassen und zum Absturz bringen. «Letztlich möchten wir solche vernetzten Sensoren, wie wir sie in jahrelanger, interdisziplinärer Arbeit entwickelt haben, auch für die Naturgefahren-Vorhersage verwenden.»

Peter Rüegg, Redaktor Hochschulkommunikation ETH Zürich

Kommentar schreiben

Die Redaktion behält sich vor, Kommentare nicht zu publizieren. Unberücksichtigt bleiben insbesondere anonyme, ehrverletzende, rassistische, sexistische, unsachliche oder themenfremde Kommentare sowie Beiträge mit Werbeinhalten.

Anzahl verbleibender Zeichen: 1000